This is a basic video course on machine learning (ML) that covers the basic theory, algorithms, and applications.
theory - mathematical
technique - practical
analysis - conceptual
- Lecture 1: The Learning Problem
- Lecture 2: Is Learning Feasible?
- Lecture 3: The Linear Model I
- Lecture 4: Error and Noise
- Lecture 5: Training versus Testing
- Lecture 6: Theory of Generalization
- Lecture 7: The VC Dimension
- Lecture 8: Bias-Variance Tradeoff
- Lecture 9: The Linear Model II
- Lecture 10: Neural Networks
- Lecture 11: Overfitting
- Lecture 12: Regularization
- Lecture 13: Validation
- Lecture 14: Support Vector Machines
- Lecture 15: Kernel Methods
- Lecture 16: Radial Basis Functions
- Lecture 17: Three Learning Principles
- Lecture 18: Epilogue
technique - practical
analysis - conceptual